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In many settings “keep your eye on the ball” is good advice. People fixate important objects to obtain high
quality information. Perhaps equally often, however, we engage with multiple important, moving, and un-
predictable objects. Where should we fixate in these situations, and where do we? Do we for example appro-
priately center fixations to manage spatial non-uniformity in our visual system? And do we fixate empty space
strategically to gain as much information as possible about multiple objects of interest? We explored these issues
in the context of Multiple Object Tracking (MOT), wherein observers track several moving objects (targets)
within a larger set of moving objects (nontargets), all the objects physically indistinguishable from one another.
Among the features that make MOT an interesting paradigm is that it cannot be accommodated by continuous
gaze to one important object, because there are multiple such objects in a given trial. Instead, it demands
sustained processing of inputs from an entire display and iterated inferences about target versus nontarget
identities. MOT therefore demands a strategic interaction between eye movements and cognition: the observer
should seek fixation locations that minimize the aggregate probability of confusing any target with any non-
target. Individuals who meet this fixation challenge should perform the task better than those who meet the
challenge less effectively. Here we describe a probabilistic model that implements the basic computations
needed to do MOT, estimating the positions of targets, predicting their future positions, and inferring corre-
spondences between new inputs and represented targets. The quality of the input received by the model depends
on its fixation location at a given moment. We simulated a group of fifty participants who all performed the same
MOT trials, with the model adopting each observer's fixation locations in the respective simulations. The model
reliably predicted individual participant tracking performances and their relative rankings within the cohort.
The results suggest that an individual's relative capability in this cognitively demanding task is in part de-
termined by his/her utilization of eye fixations to control the quality and relevance of incoming visual input.

1. Introduction

Photoreceptors in the human eye are far more densely packed in a
central region called the fovea than they are in the periphery. The early
visual system then mimics this organization, with more cells and
smaller receptive fields dedicated to foveated space than to peripheral
space. As a result, objects in the periphery are more difficult to perceive
than fixated ones. Demonstrations of poor peripheral vision can be
found under the rubric of ‘crowding’, wherein peripheral objects can be
detected, but they remain difficult to attend, recognize, or localize
when other objects are nearby (Freeman & Simoncelli, 2011; Ma,
McCloskey, & Flombaum, 2015; Pelli & Tillman, 2008; Whitney & Levi,
2011). A consequence for cognition is that fixating objects is a crucial
step in the acquisition of visual information. To name only a few
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examples: invariant object recognition appears to rely on object fixation
(Cox, Meier, Oertelt, & DiCarlo, 2005); reading involves the recognition
of characters within a small window centered on fixation location
(Binder, Pollatsek, & Rayner, 1999); and semantic parsing of complex
scenes depends critically on eye movements to individual objects
(Henderson & Hollingworth, 1998).

Yet certain activities and scenarios may be better-served by eye
movements that do not target individual objects. During visual search
in noisy environments, for example, eye movements to empty space are
used nearly optimally to maximize information gained per fixation
(Najemnik & Geisler, 2005). More generally, in settings with multiple
important objects, when unpredictable events may take place, or with
moving objects, the best place to look may not be any single object and
instead, it may often be to empty locations that maximize the overall

Received 5 November 2019; Received in revised form 26 July 2020; Accepted 27 July 2020

0010-0277/ © 2020 Elsevier B.V. All rights reserved.

Please cite this article as: Aditya Upadhyayula and Jonathan Flombaum, Cognition, https://doi.org/10.1016/j.cognition.2020.104418



http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2020.104418
https://doi.org/10.1016/j.cognition.2020.104418
mailto:flombaum@jhu.edu
https://doi.org/10.1016/j.cognition.2020.104418

A. Upadhyayula and J. Flombaum

quality and relevance of the resulting input. Choosing where in empty
space to look should therefore play a causal role in how well people
perform certain tasks.

We sought to investigate how fixation choices constrain perfor-
mance in once such task. Specifically, we investigated the relationship
between eye movements and performance in multiple object tracking
(MOT) (Pylyshyn & Storm, 1988). MOT is a common laboratory task
used in the study of visual cognition. The nature of the task makes it so
that empty space should often be the best place to fixate, as opposed to
individual objects.

1.1. Multiple object tracking (MOT)

In a typical trial, a set of identical objects appears on the screen.
Some of the objects are then designated targets, by flashing or changing
color, leaving the remaining objects designated as nontargets (some-
times also called ‘distractors'). After designation, the targets and non-
targets become physically identical, and all the objects begin to move
independently on the screen. At the end of a trial, the objects stop
moving and the task for the participant is to identify the objects that
were originally designated targets (Pylyshyn & Storm, 1988). Because
the targets and nontargets are identical in appearance at all times, save
for the start of the trial, the participant must track the target positions
continuously during the motion phase if she will be able to accurately
identify them later. The requirement of sustained attention therefore
distinguishes the task among many other attention-demanding para-
digms.

Fig. 1 schematizes the sequence of events in a typical trial. One
advantageous feature of the task is that difficulty can be manipulated
intuitively and continuously. Increasing the number of targets to track,
the number of confusable nontargets, or the speeds at which the objects
move will each make a participant more likely to make an erroneous
report at the end of a trial (Alvarez & Franconeri, 2007; Bae &
Flombaum, 2012).

Our present interest in the MOT task arises from an interest in un-
derstanding how fixation choices may place inherent limits on human
abilities. We expect that fixation should often favor empty locations
because of the inadequacy of object-directed fixations under the con-
straints of the task. Consider just the difference between tracking one
target in the MOT task and tracking two: when tracking one, the best
place to point one's eyes is directly at the moving target, and to pursue
it smoothly. A strategy that is probably not the best when
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simultaneously tracking two independently moving targets. What is?
One option might be to serially fixate each of the individual targets. But
another might be to mostly fixate the centroid of the two targets, an
empty location that will maximize the joint quality of the target inputs.
And other strategies are conceivable as well, ones that combine target
and empty space fixations in response to the current proximity between
individual targets and nontargets (i.e. the current risk of confusing any
given target). Regardless, tracking two targets demands that one resigns
himself to noisier inputs than he could otherwise acquire about a single
target, were it on its own. Tracking two targets means that the best
fixation positions over the course of a trial are different from what they
would be if the trial included only one of the targets, and fixating empty
spaces might be a necessary concession in the effort to maximize shared
input quality from the targets.

Now consider a trial with three targets. Again, the best fixation
strategy is unlikely to be the same as it would be if only two of the three
targets were included in the trial. MOT therefore demands a strategic
interaction between eye movements and cognition, as a function of the
current configuration of the input: the observer should seek fixation
locations that minimize the aggregate probability of confusing any
target with any nontarget. Individuals who meet this fixation challenge
should perform the task better than those who meet the challenge less
effectively. This is a specific prediction that we examine here, in the
case of MOT. It likely applies more broadly as well: spatial non-uni-
formity in human vision turns one's fixation choices into a lever for
controlling input relevance and quality.

1.2. Eye movements and performance: many paths (could) lead to Rome

Given what should be an important role for fixation selection in
determining performance, there is a surprising dearth of research on
eye movements in the task. This is possibly because of the early sug-
gestion that eye movements do not impact performance; specifically,
that task performance is no different when participants are forced to
fixate the center of a display or allowed to freely move their eyes
(Scholl & Pylyshyn, 1999). But three relatively more recent studies have
investigated eye movements in MOT with interesting results. Fehd and
Seiffert (Fehd & Seiffert, 2008; Fehd & Seiffert, 2010) found that a
meaningful proportion of fixations are close to the centroid of the
polygon formed by the targets at a given moment (see also (Yantis,
1992)). This suggests a potentially productive strategy for performing
the task, one that some observes may adopt more than others. Zelinsky

1. A subset of objects are
designated targets
(shown in yellow).

2. Objects become
featurally identical and
move independently
within the display.

3. The participant's task is
to identify (here, with the
mouse) the objects

% originally designated

O targets.
)

Fig. 1. A typical multiple object tracking (MOT) trial.
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and Neider (Zelinsky & Neider, 2008) similarly found a large number of
centroid fixations in a tracking cohort, though for target loads of only
two to four. For loads greater than four the proportion of fixations to
the centroid declined, replaced by an increase in shifting fixations to
individual targets. The authors suggested that the right combination of
centroid fixations and target-directed ‘rescue saccades' could be the best
strategy for more difficult MOT loads. Unfortunately, none of the three
studies identified links between the proportion of target vs. centroid
fixations and performance, nor did they demonstrate that target fixa-
tions occur at the right times, that is when a target is more at risk of
being confused than not. And these studies are likely to have over-
estimated the degree to which participants look at the target centroid
because they classified each fixation as exhaustively belonging to one of
two categories; classifications were made competitively not in terms of
goodness of absolute fit.

What if participants make fixations to empty space that are not
intended as centroid directed? What if participants have a variety of
strategies for choosing where to fixate, emanating from a variety of
considerations? For instance, what if the best places to fixate include
places like the centroid of only ‘at-risk’ targets, excluding those that are
currently far from any nontargets and unlikely to be confused. Perhaps
participants fixate a version of the target centroid that is weighted by
risk-of-loss? What if fixations are programmed to anticipate future
confusion risks, based on current trajectories?

Parametrically investigating all these possibilities (and others) is a
nontrivial experimental challenge. Put more generally, we perceive two
related challenges for understanding how (and whether) fixation
choices constrain MOT performance. One is that there may be effective
strategies that researchers fail to think of, neglecting to include them in
a classification scheme. Second, it is possible that a given trial has more
than one ‘solution’, that there are different strategies and choices that
will tend to produce equally good (or equally bad) performance. More
than one path could lead to Rome, in other words, with different people
making idiosyncratic, although strategic and effective fixation choices.

That this could be what takes place is consistent with another recent
study. Lukavsky (Lukavsky, 2013) reported that participants make
correlated eye movements across repeated individual trials, that parti-
cipant A's eye movements in trial one will be similar to his/her eye
movements during the same trial if it appears again in the experiment
session. Moreover, A's eye movements will be different from participant
B's eye movements in the same repeated trials. This suggests that eye
movements could be individualized responses to the evolution of events
over the course of a trial. But correlated eye movements could also
reflect learning through contextual cueing, which is known to take
place in MOT and to improve performance over repeated trials (Ogawa,
Watanabe, & Yagi, 2009). The results are also indeterminate with re-
spect to whether performance differences at an individual level are
related to eye movement differences.

At this time, the most one can say about eye movements and MOT
performance is that observers execute systematic fixation choices, at
least at a group (if not individual) level. Fixations are presumably lo-
calized to reduce item confusability and in response to the moment-to-
moment configuration of the display. Yet there remains a lack of direct
evidence connecting individual differences in fixation to differences in
performance. A major challenge here is the possibility of divergent
paths to the same performance outcomes. If there is more than one path
to the same end, it will be difficult to diagnose through an experimental
approach that seeks to classify fixations by strategy and then to corre-
late performance with the frequency of a given strategy.

1.3. MOT individual differences

Before moving to the current study, one may wonder whether there
are systematic individual differences in MOT performance in the first
place. Here too, the research is surprisingly limited, only three relevant
studies that we are aware of. Drew and Vogel (Drew & Vogel, 2008)
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identified two groups of participants in a test cohort, one with a high
tracking capacity and one with a lower capacity. This group-level dif-
ference in performance paralleled a group-level difference in the am-
plitudes of two ERP components, the CDA (contralateral delay activity)
—thought to correlate with working memory capacity— and the N2PC
—thought to reflect attentional selection. Thus, measurable ERP dif-
ferences correlate with group-level differences in performance. Simi-
larly, individual differences in MOT have been found to correlate with
individual differences in other tasks that measure aspects of visual
cognition, attention, and working memory (Huang, Mo, & Li, 2012;
Oksama & Hyond, 2004). The scant evidence available therefore sug-
gests systematic as opposed to random reasons for why some partici-
pants perform better than others. Here we suggest that fixation differ-
ences are the primary determinant of systematic performance
differences.

1.4. The current study

The current report takes a novel approach to confirm a link between
fixations and individual task performance. We devise a model that
adopts individual participant fixations so that we can observe the im-
pacts of those fixations on the model's performance. As will become
evident, this approach does not require that we classify individual
fixations into predetermined categories. We discuss the model's specific
implications in the case of MOT, and as a general framework for
thinking about how unobservable mental computations interact with
input-seeking behavior.

2. Methods
2.1. Participants

50 Johns Hopkins undergraduate students participated for course-
related credit. All the participants had normal or corrected-to-normal
visual acuity and completed informed consent prior to participation.
The protocols of all the reported experiments were approved by the
Homewood Institutional Review Board of the Johns Hopkins
University. In accordance with the approved IRB, demographic in-
formation was collected anonymously and without identifiers linked to
specific experimental results, used only for year-end reporting.

2.2. Trial structure and procedures

Each participant completed 120 trials of Multiple Object Tracking
(MOT), equally distributed across a combination of six loads (number of
targets: 3, 4, 5, 6, 7, 8) and four speeds (2.8, 5.6, 8.4, 11.2 deg./s), such
that there were five trials in each condition. The total number of
moving objects in a trial was always twice the number of targets (i.e.
the number of nontargets equaled the number of targets).

At the start of each trial, targets were identified by turning yellow,
before turning blue to match the nontargets. Targets and nontargets
then began to move on independent trajectories for a duration of 10 s.
They moved with constant velocity until they collided with one another
or with the edges of the display, at which point they bounced while
conserving momentum. At the end of motion, the participant was in-
structed to mark all the targets using a mouse. The participant was
required to mark as many items as there were actual targets, no fewer
or more. Participants were instructed to guess when uncertain.

All 120 trials in the experiment were pre-generated, so that each
participant completed the same set of trials, though in a randomly
distributed order across four blocks. The experiment took one hour to
complete.

2.3. Display apparatus

Stimuli were presented on an LCD monitor with a refresh rate of
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Fig. 2. Split half analysis of tracking performance comparing high speed and
low speed trials. Numbers on the markers indicate the overall rank of the
participant in the experiment.

60 Hz, controlled by a Mac mini (Apple Inc., Cupertino, CA). The
viewing distance was 55 cm (fixed by headrest) so that the tracking area
subtended 40.4° x 30.7° of visual angle. The size of each disc was 0.6°
in diameter.

2.4. Eye tracking

We used an SR Research Eyelink 1000 tracker with the headrest
tower. We recorded the data from the right eye for all the participants.
We calibrated their eye movements at the beginning of the trial block
using a 13 point calibration with the eye tracker reporting an average
accuracy of 0.45° = 0.02 (avg * 95 % CI) in the horizontal and
vertical direction. The calibration was done at the beginning of each
block to avoid the accumulation of drift errors over time.

The tracker recorded at 500 Hz for the first 25 participants, and at
1000 Hz for the remaining 25 participants. (This difference was for not
for any substantive reason. The 500 Hz setting leftover erroneously
from a previous study). Thus the eye tracker collected 5000 or 10,000
samples in each 10 s trial. The data obtained were classified as
Saccades, Fixations, and Blinks using the Eyelink native online parser,
with the following criteria: Saccades were classified when eye velocity
was greater than 30°/s, acceleration greater than 8000°/s, and Saccadic
motion was no larger than 0.15°% blinks were classified when the pupil
was not detected; the velocity threshold for saccadic motion was au-
tomatically adjusted to 60°/s by the online parser during the detection
of smooth pursuit movements.

Our analysis and modelling used participant fixation locations, de-
fined as follows. In this experimental setting, a fixation is defined as a
period of time during which a specific part on the screen is looked at
and thereby projected to a relatively constant location on the retina.
This is operationalized as a relatively still gaze position in the eye-
tracker signal implemented using the EyeLink algorithm with the
Cognitive configuration as outlined in the EyeLink 1000 manual v 1.5.

We limited our analyses to the events that were classified as fixations
by the software. Here and elsewhere in this report fixations refers to
locations in screen-based coordinates. We further down-sampled the
classified fixation events to synchronize with the display refresh rate
(60 Hz). We did this by matching the time of all of the fixation periods
with the 600 display video frames for the entire ten second duration of
a trial. Any motion frame that fell between the ending time of the (i)™
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fixation period and ending time of the (i + D" fixation period was
assigned the average gaze location of that fixation period. Further, any
motion frame that contained blinks was assigned a gaze location that
was last recorded before the blink occurred. After this pre-analysis, we
ended up with 600 pairs of eye gaze coordinates that corresponded to
the 600 motion frames. These coordinates were used in the model si-
mulations of the task, and the related behavioral analyses.

2.5. A note on the use of the term “fixations’

For simplicity, we use the term ‘fixation(s)’ throughout to refer to
the eye tracking data recorded and then extracted as just described in
section 2.4. Specifically, in each instance, the term refers to a pair of eye
gaze coordinates (groups thereof when plural) from among the 600
pairs obtained for each participant in each trial of the experiment, each
pair referenced with respect to the monitor and linked with a single
monitor frame.

3. Behavioral results
3.1. Behavioral results 1: reliable individual differences in MOT

We sought to confirm that participants with overall better perfor-
mance on the task were more likely to perform the task well throughout
the experiment, not just during one epoch or condition. To do this, we
conducted a split half correlation across participants using object speed
to divide the data. For each participant we computed average tracking
accuracy for the slower speed trials (2.8° and 5.6° per second —half of
all trials) and for the faster speed trials (8.4° and 11.2° per second —the
remaining half of trials). Fig. 2 shows the correlation in performance by
participant in these two halves of the data. Each point is a participant,
and the number (1-50) labeling each point reflects that participant's
rank among the participants across the experiment. What the graph
shows is a strong and significant correlation (r*=0.775, p < .001) for
performance in high and low speed conditions. Trials were interspersed
in a different random order for each participant so that the correlation
observed reflects consistency in performance as opposed to the vagaries
of trial order and/or effort distribution.

We then performed a similar analysis, this time dividing the data
between the lower target loads (3-5) and the higher loads (6-8). Those
results are shown in Fig. 3. Again, performance was consistent by
participant, with a significant and strong correlation between the two
halves of the data (r*=0.569, p < .001).

3.2. Behavioral results 2: general task performance

In addition to individual differences, we analyzed the effect of task
difficulty on performance at the group level. The results were typical.
Fig. 4 shows that performance decreases as a function of task difficulty,
i.e. accuracy in a given trial decreases as target load increases, and also
as speed increases. We also visualized these results in a less common
format: Fig. 5 plots the frequency with which a given number of targets
was chosen (on average) for each tracking load. The purpose is to il-
lustrate that participants accurately chose five or more targets in fewer
than 30% of the available trials.

3.3. Behavioral results 3: quantifying fixation strategies

The motivation for this project is the hypothesis that individual
differences in tracking performance can be explained causally as a
consequence of moment-to-moment inferences about target identities.
We argue that testing the hypothesis requires a model that adopts ob-
server fixations on a moment-to-moment basis. But perhaps there is a
single strategy for selecting where to fixate, one that could produce
good performance for obvious causal reasons? The primary contender is
a strategy of fixating the centroid of the targets in a given display at a
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Fig. 3. Split half analysis of tracking performance comparing high load and low
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in the experiment.
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Fig. 4. Overall tracking performance (N = 50) as a function of speed (°/sec)
and tracking load. Tracking loads differentiated by color and numbered labels
inside markers. Shading reflects 95% confidence intervals.

given moment. Previous research (Fehd & Seiffert, 2008; Fehd &
Seiffert, 2010; Zelinsky & Neider, 2008) has suggested that participants
do regularly fixate target centroids. We therefore sought to quantify the
proportion of time that participants look at the target centroid, and then
to test the hypothesis that better trackers spend more time looking at
target centroids than do poor performers.

Previous studies have tried to quantify fixation strategies under the
assumption that only two strategies are available: look at objects, or
look at object centroids (Fehd & Seiffert, 2008; Zelinsky & Neider,
2008). If a fixation falls outside a window that reasonably includes an
object, that fixation is automatically classified as centroid directed. We
applied a different analysis with the expectation that a large number of
fixations are directed towards empty space, but not at the centroid
—fixations that could reflect strategic, moment-to-moment de-
pendencies. We therefore classified fixations as centroid directed or
object directed if they were within a 4° radius of the target-defined
centroid or any individual object, respectively. All fixations that failed
to meet either criterion were classified as ‘other,” i.e. non-centroid di-
rected empty space fixations. Fig. 6 plots the resulting classifications,
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Fig. 5. Frequency with which a given number of targets was accurately chosen
as a function of tracking load. Tracking loads differentiated by color and
numbered labels inside markers.
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Fig. 6. Proportion of fixation time by strategy. N = 50. Error bars reflect 95%
confidence intervals.

demonstrating that fewer than 50% of fixations conform to either the
centroid or the object fixation strategies. More than 50% of fixations are
therefore found in non-centroid empty space. (When we repeated the
analysis with a 2° radius the same was true for 80% of fixations). Given
the relative infrequency with which participants direct fixations to the
centroid, there should be a great deal of performance variance that
remains to be explained by non-centroid, empty space fixations.

Next, for each observer we computed the average amount of time
he/she spent fixating within the target centroid for the entire experi-
ment. We correlated that average time spent with the participants'
ranked performance scores over the course of the experiment. Better
ranked individual trackers did spend more time looking at the target-
centroid than those with lower performance ranks, as shown in Fig. 7a
and b. But the correlation captured only 19% of the variance. One way
to summarize all this is as follows: Looking at the target centroid may
be a good strategy if it is applied at the right times. But doing this task
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experiment overall.

well involves controlling not only where one looks, but also when.
We conducted one more analysis, in order to consider the possibility
that some individuals make larger fixation changes than others, po-
tentially causing or reflecting individual differences. We computed the
average spread of fixations over the course of each trial, for each in-
dividual participant. The average spread of the fixations is oper-
ationalized as the overall variation in the fixations made by a partici-
pant relative to a reference point (the origin). We computed the
distances from each fixation to the origin averaging across trials within
participant. Larger numbers (in degrees) reflect fixations that deviate
more from one another. Fig. 8 plots the results of this analysis against
participant rank. Spread of fixations only explained about 20% of the
observed individual differences. This result could reflect the fact that
poor performers end up moving their eyes more because they confuse
targets and distractors, not necessarily that moving one's eyes leads to
confusions. The blue dot in Fig. 8 shows the average spread of the target
centroid over the course of the trials. Observers by and large change
their fixations to a far greater degree than the target centroid changes.

3.4. Interim summary
Our initial analyses of the behavioral and eye tracking results
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Fig. 8. Average spread of the fixations made by the participants in a trial
plotted as a function of the participant rank.

demonstrate that there are individual differences in tracking perfor-
mance across participants, and that these individual differences cannot
be explained entirely in terms of a centroid-directed fixation strategy.
These results are consistent with the hypothesis that fixations constrain
input quality and target inferences in a more dynamic way.

4. Model methods and results
4.1. Overview: a model of fixation-dependent probabilistic tracking

Among the features that makes Multiple Object Tracking an inter-
esting paradigm is that it cannot be accommodated by continuous
fixation or attention to one important object, because there are multiple
such objects in a given trial. Instead, it demands sustained processing of
inputs from an entire display and iterated inferences about target versus
nontarget identities.

Previous research has productively formalized the process of re-
ceiving input and making identity inferences within a probabilistic
framework of state estimation (also called Kalman filtering; (Ristic,
Arulampalam, & Gordon, 2004)) combined with nearest-neighbor cor-
respondence assignments (Li, Wang, Wang, & Li, 2010; Vul, Alvarez,
Tenenbaum, & Black, 2009; Zhong, Ma, Wilson, Liu, & Flombaum,
2014). The Kalman filter portions of these models estimate the positions
of the tracked objects iteratively. Consider tracking a single object: the
model behaves as an observer who receives noisy input about the po-
sition and velocity of the object, makes a prediction (a prior) about
where it should next encounter the object, and it then updates its es-
timate about the object's current position (a posterior) by optimally
combining its prediction with a new noisy observation, over and over
until tracking is complete.

With more than one object to track a second challenge arises: the
need to identify which observations come from which targets whenever
new observations are obtained. Assume that at regular intervals an
observer receives noisy observations from all the identical objects in the
display. The observations provide the participant with an approximate
sense of the positions of each of the objects. The trouble is that the
observations are unlabeled with respect to their statuses as emanating
from targets or nontargets, let alone which targets; during tracking, all
the observation-yielding objects are featurally indistinguishable. The
participant must therefore make inferences about which observations
came from targets and which from nontargets, i.e. which observations
correspond with which represented objects. In the model that we pre-
sent below this is done by minimizing the collective differences in po-
sition between each observation and the prior estimate of position for
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the object that the respective observation is assigned (see also (Vul
et al.,, 2009; Zhong et al., 2014)). In other words, the model assigns
correspondences by searching for a nearest neighbor for each ob-
servation and its respective prior, while minimizing the overall error in
the complete set of assignments. This is similar to how models of ap-
parent motion perception determine which motion paths are observed,
in particular, by assuming that each object in one frame has a mutually
exclusive and exhaustive correspondent in the next frame, and by as-
suming that object positions tend to change by small amounts on
average (e.g. (Dawson, 1991)).

What follows is a formal description of a model that implements
both Kalman filtering and correspondence assignment. Because the
model receives noisy observations of position at regular intervals, it has
two additional key properties, a sampling rate and eccentricity depen-
dent spatial noise. Based on previous research describing the temporal
profile of visual attention and perception we chose a sampling rate of
20 Hz (the high end of a range estimated to be between 8 and 20 Hz;
e.g. (Holcombe & Chen, 2013; Landau & Fries, 2012; VanRullen & Koch,
2003; VanRullen & Macdonald, 2012; VanRullen, Reddy, & Koch,
2005)). For spatial noise we assumed that observations are derived
from two dimensional Gaussian distributions centered on the positions
of the observation-generating objects. As detailed further below, the
variances of these distributions were computed independently for each
object at each sampling point, as a function of the respective object's
distance from the relevant observer's current fixation. The model
therefore adopts the fixations of individual observers in the sense that
when it simulates a given participant the amount of noise in each re-
ceived observation depends entirely on that specific participant's fixa-
tion at the time of the observation. The function linking spatial noise to
eccentricity is derived from previous research (Carrasco, Evert, Chang,
& Katz, 1995; Rovamo & Virsu, 1979).

4.2. Formal model details

N7 denotes the number targets to be tracked and N denotes the
non-targets such that the total number of objects in any display is de-
noted as N, where N = Nr + Np, and Ny = Np. At any given point in
time, the state of a given item (i) is denoted as (S).. This is a vector
containing the position and velocity of the item.

(S); = [(Sp)i; (Sv)i] = [xti y[i vxti vy[i]T (€8}

Here, x,' and y, are the x and y coordinates of the item. v/ and v,,’
are the respective components of the item (i)'s instantaneous velocity.
Let (S);, (8)! denote prior and posterior expectations about the true state
respectively.

During a sampling frame, observations are received from each of the
items in the display. Because the model does not know which item
generated which observation, we denote the observations with the su-
perscript m, so that each observation at given time t is denoted as, and
includes only a noisy sample of m's true position where:

Zp)!" =B (S)" + Ry

B =[1000]

0100 ©)

(R){™ is the noise in the observation for the m™ item, assumed to be
zero mean Gaussian white noise with covariance as follows:

®)" = (@*(EN'L 3

where Lis a [2 x 2] identity matrix. In our model, we utilized an ec-
centricity dependent o, meaning that the position of the eyes control the
amount of noise in each individual observation (Carrasco et al., 1995;
Rovamo & Virsu, 1979) as follows:

o(E)=c#* (14042 % E) ()]

The value of c in our model is 0.08, based on unpublished
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experiments in our lab, and consistent with a value used in a previous
modelling study (Vul et al., 2009). In our model, each target is tracked
by its own Kalman filter with its own a-priori and a-posteriori error
covariances (4 x 4), denoted as (P)! and (P)! respectively. Following
standard Kalman filter procedures the model employs a prediction and
an update step, along with a correspondence step in-between as ne-
cessitated by the MOT paradigm.

4.2.1. Prediction step

A key feature of model is that it generates predictions about the
upcoming state of the system. Given a posterior belief about where a
tracked target is (8)._,, the model generates a prediction —a prior (§)i—
about where it will next find the object, that is the next time that it
receives observations. It does this using a state transition matrix that is
governed by the Newtonian laws of motion, as follows:

®r=A0), ()
where
1010
A =001 0
0001
®), =A®@)_ AT + 1 (6)

4.2.2. Update step

A typical Kalman Filter knows the correspondence between ob-
servations and objects. We therefore describe the update step of our
model before describing the correspondence procedure. It is important
to understand, however, that this updating takes place after the cor-
respondence step provides its output, a mutually exclusive and ex-
haustive mapping between each of the tracked targets and a new po-
sition observation.

Accordingly, updating proceeds given a set of labeled observations Z,'
and the Kalman gain K™ [4 X 2] matrix at time step t. This Kalman
gain is used to optimally weigh in the prior and the observations at time
t to generate the posterior for that time frame.

K)i =) « B« (B« (P)} « BT + (R
= [(Kp); (K]
S =Gpi + (Kpi((Z) — B+ )
B =2, — )i,
P =@ — (K); = B) = (P); @

4.2.3. Correspondence step

At a given time step ‘t’, the model has access to unlabeled bag of
observations {Z;"} where m € M={1,2,3,...N}, and does not know
which observations correspond to which objects in the a-priori state
(8,)! in order to generate the a-posteriori state estimate (S,)! of the
targets. The assignment vector i is obtained by maximising the prob-
ability that an observation resulted from a given a-priori state while
minimizing the associated overall cost C for this assignment vector
where

C =3 d(Gph (Z) ®)

and d(.) is the Euclidean distance. We used the python inbuilt linear
optimal assignment package (scipy) to compute the above correspon-
dence vector.

4.3. Model simulations

To simulate the tracking performance of experiment participants,
we did the following. The model performed each trial completed by
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each participant. On the first frame of each simulation, the model re-
ceived accurate input about the positions of each of the targets in the
display. On each subsequent monitor frame the model either received
input or not depending on its refresh rate (i.e. at 20 Hz, the model
received input on every third monitor frame). When the model received
input, it consisted of an identity-unlabeled position sample from each
object in the display, both the targets and nontargets. The samples were
drawn from two dimensional Gaussian distributions, each centered on
the true location of the relevant source object, and with a o value de-
termined by Eq. (4) (Carrasco et al., 1995; Rovamo & Virsu, 1979) as
described above. The fixation position of the model during each input
frame was the recording-derived fixation position of the observer
during that frame, as described in Section 2.4. The model completed
each trial 100 times as a given participant. Noisy samples were drawn
independently during each simulation. Each simulation ended by re-
cording the items that the model had labeled as targets, such that the
model could identify anywhere between 0 and N, items correctly in one
simulation. Average performance across the 100 simulations of a trial
served as a prediction for how well a given participant should perform
in a given trial.

4.4. Model simulation results 1: general task performance

Qualitatively, the model reproduced typical patterns of human
performance in MOT, reduced tracking performance as speed and load
increase. Fig. 9 plots model performance as a function of object speed
and tracking load. The figure was generated by analogy to Fig. 4, by
averaging together the performance of all the simulated participants at
each tracking load and speed. At the smallest speeds and loads the
model under performed human participants, although broadly, it out-
performed. Fig. 10 (right panel) is drawn by analogy to Fig. 5 (re-
produced for comparison, in the left panel). It depicts the frequency
with which simulated participants correctly picked a given number of
targets given some number of targets to track. Here too, the model
mostly outperforms the human cohort, for example, picking 4 targets
out of 6 correctly more than 60% of the time whereas the participant
cohort did the same less than 40% of the time. Importantly, though, the
model's performance, visualized in this way, is qualitatively similar to
participant performance. Notably the model's effective tracking capa-
city is limited even though there are no capacity limits built-into it. For
example, the model never identified eight targets correctly (given a
load of eight). It was accordingly in the position of representing (and
tracking) eight items in the relevant trials, some of which were always
nontargets (in point of fact) by the end of each such trial.

Observed Participant Performance
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4.5. Model simulation results 2: individual differences

The model significantly predicted human performance at an in-
dividual level (> = 0.38, p < 0.005), and individual rankings within
the group (** = 0.40, p < 0.005). Fig. 11 plots the model's predicted
accuracy for each of the 50 observers (across the entirety of the ex-
periment) against measured accuracy and also the model predictions
about observer rankings within the cohort of 50 participants. Recall
that we did not fit any parameters to the model on an individual ob-
server basis. (In fact, we did not fit any parameters at all. Instead we
fixed the values of the relevant parameters based on extant research
pertaining to spatial observation noise and the temporal frequency of
perception). And the observers all completed the same exact trials.
Adopted fixations were the only factor that differed when the model
simulated one participant or another in a given trial. Fixation differ-
ences are therefore the only variable that can explain how and why the
model made reliably different predictions about the performances of
different observers.

The model also can be used to make predictions at a more granular
level. Fig. 12 (left panel) shows the model's average performance over
100 simulations of a given trial as a given participant, correlated
against each participant's actual performance in the relevant trial.
There are 6000 points in the graph, each reflecting one trial and a single
participant. The strong correlation (* = 0.824, p < 0.05) demonstrates
how the difficulty of a given trial was similar for observers and their
simulations. The right panel of Fig. 12 makes a similar point (> =
0.825, p < 0.05), by reducing the number of points to the 120 trials in
the experiment. Each observer completed the same set of trials. Ac-
cordingly, the graph plots average group performance on a given trial
correlated with average performance of the simulated group. The trials
are further coded by the tracking load (using colors and numbers). The
figure demonstrates how the model performed more poorly at higher
tracking loads, like the observers. More interestingly, within a load, the
model found specific trials more or less challenging similarly to ob-
servers. Note for example that for loads of six and seven targets there
was a wide range of performance variance across individual trials, both
for human observers and for the model. This underscores the extent to
which task performance depends not just on tracking load (or speed),
but also on the incidental and specific dynamics of a given trial, com-
bined with how an observer directs fixations in the respective trial.

Finally, we sought to determine whether fixation locations and time
explain performance better than just the fixation locations. Maybe good
trackers just pick good positions to fixate? Maybe there are one or more
good places to point one's eyes in a trial at any time, independent of the
particular constituents of the trial at a given moment or its evolution?
The results presented so far all suggest that this is unlikely. We sought
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Fig. 9. Overall model (right panel) tracking performance as a function of speed (°/sec) and tracking load. Tracking loads differentiated by color and numbered labels
inside markers. Shading reflects 95% confidence intervals. Model performance juxtaposed with human participant performance (left panel) also shown in Fig. 4.
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Fig. 11. Predicted accuracy vs observed accuracy by participant (left panel) and predicted observer rank vs. observed ranking (right panel). Each circle is one of the

50 participants.

further confirmation by re-simulating participants, with fixations in
reversed order for a given trial. The final fixation made by the parti-
cipant was treated as the first fixation input to the model (and vice
versa); the penultimate fixation was treated as the second fixation
input, vice versa, and so on and so forth. This of course preserves a good
deal the temporal structure relating fixations and display configuration
in the middle of a trial. Even so, the model only captured about 20% of
performance variance by participant, as shown in Fig. 13, emphasizing
the importance of the where and also the when of fixations in MOT.

5. General discussion

We sought to investigate the relationship between fixation choices
and cognitive performance in the Multiple Object Tracking (MOT) task.
The task was chosen for a number of specific reasons. It demands sus-
tained effort over an extended period of time. Performance is limited
—usually between three and five targets— and performance varies
across participants. It is a task where we should expect choices about
where to fixate to constrain performance, although research has not
previously identified a causal link in this context. And it is a task in

which good fixations should often select empty space, distinguishing it
from many other research contexts, which emphasize object fixations.
Finally, we anticipated that causally linking fixation locations and
performance would require a moment-to-moment model of the inter-
action between fixation-determined inputs and mental computation.
Ongoing or iterated computation that interacts with changing input is a
likely aspect of a great deal of human real-world interaction. With the
possible exception of visual search (Eckstein, 1998; Eckstein, 2011;
Eckstein, Thomas, Palmer, & Shimozaki, 2000; Najemnik & Geisler,
2005) however, research in visual cognition tends to focus on tasks with
short, punctate deployments of mental effort over the course of one or
only a few fixations. Here, we saw an opportunity to leverage compu-
tational progress (Vul et al., 2009; Zhong et al., 2014) in order to in-
vestigate a sustained, interactive loop between fixations, input, and
efficient mental computation in the case of MOT.

We tested fifty participants in a set of identical tracking trials across
a range of speed and tracking loads, while we also recorded where on
the screen they fixated. We found typical effects of speed and load on
performance at a group level, and also consistent differences in overall
performance across individuals. We then implemented a computational
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Fig. 12. Left panel: Average accuracy (Model vs. Observers) in each individual trial, for each individual observer. There are 6000 points (50 participants each
completing 120 trials). Right panel: Average accuracy (Model vs. Observers) in each individual trial, averaged across observes. Each point is one of the 120
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Fig. 13. Left panel: Average accuracy (Model vs. Observers) in each individual trial, for each individual observer. There are 6000 points (50 participants each
completing 120 trials). Right panel: Average accuracy (Model vs. Observers) in each individual trial, averaged across observes. Each point is one of the 120

experimental trials, coded for target load by color (and number labels).

model of MOT, for the first time providing it with noisy inputs that
depend on where on the screen a simulated observer fixates at each
moment in the trial. This effectively allowed the model to simulate each
individual observer by adopting their individual fixations, allowing us
to observe the effects of different fixations without classifying them in
strategic terms. Without fitted parameters the model made reliable
predictions about individual participant performances and it reliably
ranked observers relative to one another. The results suggest a causal
link between fixations and performance at an individual level because
fixations were the only variable that we manipulated when the model
simulated one participant or another in a given trial. The results also
demonstrate how some of the general performance limitations asso-
ciated with this task emerge from inherent computational uncertainty.

5.1. What we used to think about eye movements, individual differences,
and MOT

We began this project with an expectation derived from first prin-
ciples, that eye fixations should constrain MOT performance. We
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therefore hope that the results appear obvious, at least in retrospect. Yet
there is surprisingly little research on fixation during MOT. In fact, most
studies with the paradigm do not mention whether observers were
asked to fixate or allowed to freely move their eyes, presumably be-
cause the prevailing assumption is that eye movements do not have
much of an effect on performance.

Why would this be the prevailing assumption? We suspect that it
owes to the assumed importance of attention as a constraint on task
performance, and also to the early suggestion that eye movements do
not impact performance; specifically, that task performance is no dif-
ferent when participants are forced to fixate the center of a display or
allowed to freely move their eyes (Scholl & Pylyshyn, 1999). But there
are reasons to doubt this claim beyond our results. For one, it was made
in the context of experiments with relatively smaller tracking loads
(four or fewer), whereas fixation selection may account for more
variability as task difficulty increases. Second, the claim was made with
reference to task performance on average, meaning that eye movement
differences may account for individual differences that average out in a
group-level comparison between free movement and fixation
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conditions. It may also have to do with the fact that understanding the
full causal relationship between fixations and performance requires an
analysis on a moment-to-moment basis, where computational confu-
sions do or do not occur only to manifest in performance at the end of a
ten second (or longer) trial. The extended and sustained nature of the
task makes it especially difficult to explain without a computational
model that performs the task, an opportunity that only arose recently.

As a consequence, only four previous studies that we are aware of
supply evidence linking performance and fixations. Consistent with the
idea that fixation choices reflect moment-to-moment responses to the
display, Lukavsky (Lukavsky, 2013) reported that participants make
correlated eye movements across repeated individual trials. Fehd and
Seiffert (Fehd & Seiffert, 2008; Fehd & Seiffert, 2010) found that a
meaningful proportion of fixations are close to the centroid of the
polygon formed by the targets at a given moment (see also (Yantis,
1992)). Zelinsky and Neider (Zelinsky & Neider, 2008) found the same,
though for target loads of only two to four, whereas for loads greater
than four the proportion of fixations to the centroid declined, replaced
by an increase in shifting fixations to individual targets. It is important
to note that in these three studies fixations were classified competi-
tively: each screen-referenced pair of fixation coordinates was classified
as either directed at an object or directed at the centroid. As a result, if a
fixation to empty space was too far from an object to classify it as ob-
ject-directed, then it was classified as centroid directed.

We analyzed fixations differently, only classifying them as centroid-
directed when they were within a 4° radius. And rather than correlate
classes of fixations with overall performance, we evaluated the cumu-
lative effects of serial fixations by using those fixations to determine the
momentary inputs to a model that performed the task; when we re-
versed the order of the inputs to the model, it explained a great deal less
of the performance variance (Fig. 12). The results are consistent with
previous findings in the sense that they suggest systematic fixation
patterns and they implicate fixations as a key determinant of perfor-
mance. Our analyses further suggest that most fixations are directed
neither to individual targets nor to centroids, and that those empty
space fixations vary between individuals in a way that explains per-
formance differences. Recall that the amount of time an observer
spends fixating the centroid explained only a small amount of perfor-
mance variance (Fig. 7) and also that participants changed fixation
positions far more than the centroid position actually changes (Fig. 8).
These results suggest that (especially good) trackers choose fixation
locations that are not always the centroid nor individual items in order
to maximize input quality in relation to the evolving risk of confusing
different targets. The key determinants of performance are where one
chooses to look, and also when.

5.2. What limits performance in the first place?

Understanding the capabilities of visual cognition requires an ex-
planation of its limitations. Not surprisingly, examples of processing
limitations often motivate large research foci. Think, for instance, of
inattentional blindness, the attentional blink, and change blindness:
classic case studies that elucidate how visual perception, attention and
memory work by pointing to their limits. Multiple object tracking has
long been deployed in experiments with a similar logic. We can perhaps
understand how discrete objects are segmented and represented by
asking what kinds of things we can track, what we cannot, and by
asking how many is too many (e.g. (Scholl, Pylyshyn, & Feldman, 2001;
VanMarle & Scholl, 2003)). In the earliest research on tracking, the
apparent limit of about three to five simultaneous objects was taken as
evidence of a discrete imposed limit on the underlying token re-
presentations used to index and update one's knowledge of objects in
the world (Pylyshyn & Storm, 1988). In step with ongoing debates
about the nature of visual working memory, later experiments were
taken as evidence of more continuous resources that impose tradeoffs
on representational resolution when those resources must be shared
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among larger sets of objects (Alvarez & Franconeri, 2007; Horowitz &
Cohen, 2010; Ma & Huang, 2009). Both kinds of theories share the
assumption that limitations in performance are imposed, limitations on
the input to tracking which arise because some kind of vehicle needs to
be consumed in order to deliver the input.

We intentionally did not impose limits of any kind upon the model
in our study. It does not possess discrete limits in the sense that it can
represent as many as eight targets at once (even if some of the eight
represented-targets are actually nontargets; see Fig. 10). Similarly, we
did not impose any resource-like limits on the model, which could
manifest as increased noise and/or a reduced sampling rate as tracking
load increases. The reason for avoiding imposed limits was a concern
that they would make it difficult to identify the causes of individual
differences. In particular, if we fit parameter values that could vary by
participant we would presumably end up fitting the individual differ-
ences that we were trying to explain. The result is a model that mostly
outperformed participants, but one that makes it possible to isolate the
variability between participants that must be caused by differences in
fixation, those being the only changing variable and one we recorded
rather than fit.

Even without imposed limits, the model did show qualitatively si-
milar effects of speed and load to the the human participants. Fig. 10
juxtaposed model performance at the group level with human perfor-
mance in terms of number of items selected by load. Salient features of
human performance include a modal tendency to report only four items
correctly, regardless of the assigned target load, and the near absence of
trials in which seven or eight targets were accurately reported. These
are the kinds of effects that may seem to point to discrete, imposed
capacity limits. But note that there are similarities in model perfor-
mance. The model also never identified eight targets correctly even
though the model did always represent eight targets when so assigned.
The results therefore demonstrate how some of the costs associated
with load and speed reflect inherent computational uncertainty rather
than consumption limits somewhere in the hardware of the visual
system. Two potentially generalizable implications with respect to how
to investigate the sources of limitations in visual processing: there is
something to gain by looking through the lens of individual differences,
and it is useful to have a model of the mental computations that need to
be performed in order to accomplish the task.

5.3. Improving the model

Although the model presented had effective limitations on its per-
formance of the task, it outperformed human observers overall.
Similarly, while the model produced very high correlations with human
performance on a trial-by-trial basis (Fig. 10), correlations with in-
dividual participant accuracy and rank were a little more than half the
value of the split-half correlations between participants and themselves
(Fig. 11 compared with Figs. 2 and 3). A number of technical and
theoretical improvements could serve to close this gap.

On the technical side, model predictions likely suffer from neces-
sities that arose in the processing of eye tracker data. In particular,
relating eye tracker outputs to individual monitor frames required
significant down sampling (with the monitor running at 60 Hz). This
meant that the coordinates used as a fixation for a given frame were
actually an average of coordinates recorded over the period of time that
a monitor frame lasted. Portions of these longer periods may not have
been fixations at all, including eye movements and blinks. These lim-
itations should only add noise to the model predictions. That we found
significant effects regardless demonstrates how much individual eye
position choices have an impact on individual performance. Future
studies may find stronger effects by better synchronizing eye tracker
recordings with screen-based events.

Perhaps more importantly, the model includes likely over-
simplifications of processing reality in the human mind and brain.
Specifically, we employed a refresh rate of 20 Hz in our simulations.
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The number itself was derived from related research concerning the
rhythms of attention and perception. But frames and their respective
rates are probably no more than useful analogies for more continuous
processing in the visual system, in this case analogies that also provide a
useful operational approach to supplying the model with inputs.
Similarly, our model was handicapped by eccentricity-dependent input
noise. Again, useful for operational purposes and as an analogy to visual
processing, but not necessarily a perfect characterization of how unit
density in the retina and in visual cortex affect perception.

Finally, the model implemented what we view as the bare-bones of
the computation necessary to accomplish this tracking task. This meant
that the model always ‘knows' exactly how many targets it is meant to
track in a trial, something that human observers have shown un-
certainty about (Ma & Flombaum, 2013). The model also always con-
tinues to track the full expected load. It is known that human observers
sometimes ‘drop’ targets. They give up, lose confidence in the status of
certain items, or otherwise become confused about the number they
should be tracking in the first place (Drew, Horowitz, & Vogel, 2013).
The dynamics of stopping or failing to track a target are not well un-
derstood, and this makes it difficult to add such inflection points into
the model. That human observers drop items and guess at the end of the
trial is a key difference with the model we presented, a model that
never guesses. This may well account for some of the model's tendency
to over perform, as well as some of the individual participant differ-
ences that the model could not account for. A better understanding of
how, when, and why participants track fewer (or more) items than
assigned will be important for future progress.

6. Conclusion

We demonstrated that differences between participants in terms of
where they locate fixations can be causally linked to performance dif-
ferences in the specific case of multiple object tracking. The MOT task,
like many others, has attracted research attention because it provides
clear evidence for processing limitations in human perception and
cognition. These limitations can be observed at a group level —in so far
as everyone makes mistakes when asked to track more than four ob-
jects— and they can be observed at the level of individual differences
—in so far as some people seem to have more tracking capacity than
others. What causes these limitations? At both the group and individual
level, the traditional answer appeals to a mental or neural resource of
some kind, that performed limits reveal a limited internal capacity. We
have shown that some performance limits emerge organically from an
interaction between fixation-dependent inputs and the mental compu-
tations that they supply. Because the model implemented was identical
across participants, except through adoption of unique fixations, it
provides a computational account of individual differences in a task
where those differences have been assumed to reflect reserves of
something commodity-like, such as attention or working memory.
Appreciating that some person performed MOT poorly because they
looked at the wrong places is importantly different from ascribing their
performance to inherent limits or the consumption of internal re-
sources. Most broadly, the results therefore emphasize what may be a
general property of cognitive performance: the important role of cog-
nitive and even motor control for effectively utilizing efficient mental
computation.
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Appendix A. Supplemental information

The dataset used in this research is available on http://dx.doi.org/
10.17632/h5zgzrfkxr.2. Please use ‘Upadhyayula, Aditya; Flombaum,
Jonathan (2020), “MOT individual differences”, Mendeley Data, v2
http://dx.doi.org/10.17632/h5zgzrfkxr.2’ to cite this dataset.
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